Google C++ Style Guide


Table of Contents

Important Note

Displaying Hidden Details in this Guide


This style guide contains many details that are initially hidden from view. They are marked by the triangle icon, which you see here on your left. Click it now. You should see “Hooray” appear below.

Hooray! Now you know you can expand points to get more details. Alternatively, there’s an “expand all” at the top of this document.


C++ is the main development language used by many of Google’s open-source projects. As every C++ programmer knows, the language has many powerful features, but this power brings with it complexity, which in turn can make code more bug-prone and harder to read and maintain.

The goal of this guide is to manage this complexity by describing in detail the dos and don’ts of writing C++ code. These rules exist to keep the code base manageable while still allowing coders to use C++ language features productively.

Style, also known as readability, is what we call the conventions that govern our C++ code. The term Style is a bit of a misnomer, since these conventions cover far more than just source file formatting.

One way in which we keep the code base manageable is by enforcing consistency. It is very important that any programmer be able to look at another’s code and quickly understand it. Maintaining a uniform style and following conventions means that we can more easily use “pattern-matching” to infer what various symbols are and what invariants are true about them. Creating common, required idioms and patterns makes code much easier to understand. In some cases there might be good arguments for changing certain style rules, but we nonetheless keep things as they are in order to preserve consistency.

Another issue this guide addresses is that of C++ feature bloat. C++ is a huge language with many advanced features. In some cases we constrain, or even ban, use of certain features. We do this to keep code simple and to avoid the various common errors and problems that these features can cause. This guide lists these features and explains why their use is restricted.

Open-source projects developed by Google conform to the requirements in this guide.

Note that this guide is not a C++ tutorial: we assume that the reader is familiar with the language.

Header Files

In general, every .cc file should have an associated .h file. There are some common exceptions, such as unittests and small .cc files containing just a main() function.

Correct use of header files can make a huge difference to the readability, size and performance of your code.

The following rules will guide you through the various pitfalls of using header files.

The #define Guard


All header files should have #define guards to prevent multiple inclusion. The format of the symbol name should be <PROJECT>_<PATH>_<FILE>_H_.

To guarantee uniqueness, they should be based on the full path in a project’s source tree. For example, the file foo/src/bar/baz.h in project foo should have the following guard:

#ifndef FOO_BAR_BAZ_H_
#define FOO_BAR_BAZ_H_


#endif  // FOO_BAR_BAZ_H_

Header File Dependencies


Don’t use an #include when a forward declaration would suffice.

When you include a header file you introduce a dependency that will cause your code to be recompiled whenever the header file changes. If your header file includes other header files, any change to those files will cause any code that includes your header to be recompiled. Therefore, we prefer to minimize includes, particularly includes of header files in other header files.

You can significantly minimize the number of header files you need to include in your own header files by using forward declarations. For example, if your header file uses the File class in ways that do not require access to the declaration of the File class, your header file can just forward declare class File; instead of having to #include "file/base/file.h".

How can we use a class Foo in a header file without access to its definition?

  • We can declare data members of type Foo* or Foo&.
  • We can declare (but not define) functions with arguments, and/or return values, of type Foo. (One exception is if an argument Foo or const Foo& has a non-explicit, one-argument constructor, in which case we need the full definition to support automatic type conversion.)
  • We can declare static data members of type Foo. This is because static data members are defined outside the class definition.

On the other hand, you must include the header file for Foo if your class subclasses Foo or has a data member of type Foo.

Sometimes it makes sense to have pointer (or better, scoped_ptr) members instead of object members. However, this complicates code readability and imposes a performance penalty, so avoid doing this transformation if the only purpose is to minimize includes in header files.

Of course, .cc files typically do require the definitions of the classes they use, and usually have to include several header files.

Note: If you use a symbol Foo in your source file, you should bring in a definition for Foo yourself, either via an #include or via a forward declaration. Do not depend on the symbol being brought in transitively via headers not directly included. One exception is if Foo is used in, it’s ok to #include (or forward-declare) Foo in myfile.h, instead of

Inline Functions


Define functions inline only when they are small, say, 10 lines or less.

Definition: You can declare functions in a way that allows the compiler to expand them inline rather than calling them through the usual function call mechanism.

Pros: Inlining a function can generate more efficient object code, as long as the inlined function is small. Feel free to inline accessors and mutators, and other short, performance-critical functions.

Cons: Overuse of inlining can actually make programs slower. Depending on a function’s size, inlining it can cause the code size to increase or decrease. Inlining a very small accessor function will usually decrease code size while inlining a very large function can dramatically increase code size. On modern processors smaller code usually runs faster due to better use of the instruction cache.


A decent rule of thumb is to not inline a function if it is more than 10 lines long. Beware of destructors, which are often longer than they appear because of implicit member- and base-destructor calls!

Another useful rule of thumb: it’s typically not cost effective to inline functions with loops or switch statements (unless, in the common case, the loop or switch statement is never executed).

It is important to know that functions are not always inlined even if they are declared as such; for example, virtual and recursive functions are not normally inlined. Usually recursive functions should not be inline. The main reason for making a virtual function inline is to place its definition in the class, either for convenience or to document its behavior, e.g., for accessors and mutators.

The -inl.h Files


You may use file names with a -inl.h suffix to define complex inline functions when needed.

The definition of an inline function needs to be in a header file, so that the compiler has the definition available for inlining at the call sites. However, implementation code properly belongs in .cc files, and we do not like to have much actual code in .h files unless there is a readability or performance advantage.

If an inline function definition is short, with very little, if any, logic in it, you should put the code in your .h file. For example, accessors and mutators should certainly be inside a class definition. More complex inline functions may also be put in a .h file for the convenience of the implementer and callers, though if this makes the .h file too unwieldy you can instead put that code in a separate -inl.h file. This separates the implementation from the class definition, while still allowing the implementation to be included where necessary.

Another use of -inl.h files is for definitions of function templates. This can be used to keep your template definitions easy to read.

Do not forget that a -inl.h file requires a #define guard just like any other header file.

Function Parameter Ordering


When defining a function, parameter order is: inputs, then outputs.

Parameters to C/C++ functions are either input to the function, output from the function, or both. Input parameters are usually values or const references, while output and input/output parameters will be non-const pointers. When ordering function parameters, put all input-only parameters before any output parameters. In particular, do not add new parameters to the end of the function just because they are new; place new input-only parameters before the output parameters.

This is not a hard-and-fast rule. Parameters that are both input and output (often classes/structs) muddy the waters, and, as always, consistency with related functions may require you to bend the rule.

Names and Order of Includes


Use standard order for readability and to avoid hidden dependencies: C library, C++ library, other libraries’ .h, your project’s .h.

All of a project’s header files should be listed as descentants of the project’s source directory without use of UNIX directory shortcuts . (the current directory) or .. (the parent directory). For example, google-awesome-project/src/base/logging.h should be included as

#include "base/logging.h"

In dir/, whose main purpose is to implement or test the stuff in dir2/foo2.h, order your includes as follows:

  1. dir2/foo2.h (preferred location — see details below).
  2. C system files.
  3. C++ system files.
  4. Other libraries’ .h files.
  5. Your project’s .h files.

The preferred ordering reduces hidden dependencies. We want every header file to be compilable on its own. The easiest way to achieve this is to make sure that every one of them is the first .h file #included in some .cc.

dir/ and dir2/foo2.h are often in the same directory (e.g. base/ and base/basictypes.h), but can be in different directories too.

Within each section it is nice to order the includes alphabetically.

For example, the includes in google-awesome-project/src/foo/internal/ might look like this:

#include "foo/public/fooserver.h"  // Preferred location.

#include <sys/types.h>
#include <unistd.h>

#include <hash_map>
#include <vector>

#include "base/basictypes.h"
#include "base/commandlineflags.h"
#include "foo/public/bar.h"




Unnamed namespaces in .cc files are encouraged. With named namespaces, choose the name based on the project, and possibly its path. Do not use a using-directive.

Definition: Namespaces subdivide the global scope into distinct, named scopes, and so are useful for preventing name collisions in the global scope.


Namespaces provide a (hierarchical) axis of naming, in addition to the (also hierarchical) name axis provided by classes.

For example, if two different projects have a class Foo in the global scope, these symbols may collide at compile time or at runtime. If each project places their code in a namespace, project1::Foo and project2::Foo are now distinct symbols that do not collide.


Namespaces can be confusing, because they provide an additional (hierarchical) axis of naming, in addition to the (also hierarchical) name axis provided by classes.

Use of unnamed spaces in header files can easily cause violations of the C++ One Definition Rule (ODR).


Use namespaces according to the policy described below.

Unnamed Namespaces

  • Unnamed namespaces are allowed and even encouraged in .cc files, to avoid runtime naming conflicts:
    namespace {                           // This is in a .cc file.
    // The content of a namespace is not indented
    enum { kUnused, kEOF, kError };       // Commonly used tokens.
    bool AtEof() { return pos_ == kEOF; }  // Uses our namespace's EOF.
    }  // namespace

    However, file-scope declarations that are associated with a particular class may be declared in that class as types, static data members or static member functions rather than as members of an unnamed namespace. Terminate the unnamed namespace as shown, with a comment // namespace.

  • Do not use unnamed namespaces in .h files.


Named Namespaces

Named namespaces should be used as follows:

  • Namespaces wrap the entire source file after includes, gflags definitions/declarations, and forward declarations of classes from other namespaces:
    // In the .h file
    namespace mynamespace {
    // All declarations are within the namespace scope.
    // Notice the lack of indentation.
    class MyClass {
      void Foo();
    }  // namespace mynamespace
    // In the .cc file
    namespace mynamespace {
    // Definition of functions is within scope of the namespace.
    void MyClass::Foo() {
    }  // namespace mynamespace

    The typical .cc file might have more complex detail, including the need to reference classes in other namespaces.

    #include "a.h"
    DEFINE_bool(someflag, false, "dummy flag");
    class C;  // Forward declaration of class C in the global namespace.
    namespace a { class A; }  // Forward declaration of a::A.
    namespace b {
    ...code for b...         // Code goes against the left margin.
    }  // namespace b
  • Do not declare anything in namespace std, not even forward declarations of standard library classes. Declaring entities in namespace std is undefined behavior, i.e., not portable. To declare entities from the standard library, include the appropriate header file.
  • You may not use a using-directive to make all names from a namespace available.
    // Forbidden -- This pollutes the namespace.
    using namespace foo;
  • You may use a using-declaration anywhere in a .cc file, and in functions, methods or classes in .h files.
    // OK in .cc files.
    // Must be in a function, method or class in .h files.
    using ::foo::bar;
  • Namespace aliases are allowed anywhere in a .cc file, anywhere inside the named namespace that wraps an entire .h file, and in functions and methods.
    // Shorten access to some commonly used names in .cc files.
    namespace fbz = ::foo::bar::baz;
    // Shorten access to some commonly used names (in a .h file).
    namespace librarian {
    // The following alias is available to all files including
    // this header (in namespace librarian):
    // alias names should therefore be chosen consistently
    // within a project.
    namespace pd_s = ::pipeline_diagnostics::sidetable;
    inline void my_inline_function() {
      // namespace alias local to a function (or method).
      namespace fbz = ::foo::bar::baz;
    }  // namespace librarian

    Note that an alias in a .h file is visible to everyone #including that file, so public headers (those available outside a project) and headers transitively #included by them, should avoid defining aliases, as part of the general goal of keeping public APIs as small as possible.


Nested Classes


Although you may use public nested classes when they are part of an interface, consider a namespace to keep declarations out of the global scope.

Definition: A class can define another class within it; this is also called a member class.

class Foo {

  // Bar is a member class, nested within Foo.
  class Bar {



Pros: This is useful when the nested (or member) class is only used by the enclosing class; making it a member puts it in the enclosing class scope rather than polluting the outer scope with the class name. Nested classes can be forward declared within the enclosing class and then defined in the .cc file to avoid including the nested class definition in the enclosing class declaration, since the nested class definition is usually only relevant to the implementation.

Cons: Nested classes can be forward-declared only within the definition of the enclosing class. Thus, any header file manipulating a Foo::Bar* pointer will have to include the full class declaration for Foo.

Decision: Do not make nested classes public unless they are actually part of the interface, e.g., a class that holds a set of options for some method.

Nonmember, Static Member, and Global Functions


Prefer nonmember functions within a namespace or static member functions to global functions; use completely global functions rarely.

Pros: Nonmember and static member functions can be useful in some situations. Putting nonmember functions in a namespace avoids polluting the global namespace.

Cons: Nonmember and static member functions may make more sense as members of a new class, especially if they access external resources or have significant dependencies.


Sometimes it is useful, or even necessary, to define a function not bound to a class instance. Such a function can be either a static member or a nonmember function. Nonmember functions should not depend on external variables, and should nearly always exist in a namespace. Rather than creating classes only to group static member functions which do not share static data, use namespaces instead.

Functions defined in the same compilation unit as production classes may introduce unnecessary coupling and link-time dependencies when directly called from other compilation units; static member functions are particularly susceptible to this. Consider extracting a new class, or placing the functions in a namespace possibly in a separate library.

If you must define a nonmember function and it is only needed in its .cc file, use an unnamed namespace or static linkage (eg static int Foo() {...}) to limit its scope.

Local Variables


Place a function’s variables in the narrowest scope possible, and initialize variables in the declaration.

C++ allows you to declare variables anywhere in a function. We encourage you to declare them in as local a scope as possible, and as close to the first use as possible. This makes it easier for the reader to find the declaration and see what type the variable is and what it was initialized to. In particular, initialization should be used instead of declaration and assignment, e.g.

int i;
i = f();      // Bad -- initialization separate from declaration.
int j = g();  // Good -- declaration has initialization.

Note that gcc implements for (int i = 0; i < 10; ++i) correctly (the scope of i is only the scope of the for loop), so you can then reuse i in another for loop in the same scope. It also correctly scopes declarations in if and while statements, e.g.

while (const char* p = strchr(str, '/')) str = p + 1;

There is one caveat: if the variable is an object, its constructor is invoked every time it enters scope and is created, and its destructor is invoked every time it goes out of scope.

// Inefficient implementation:
for (int i = 0; i < 1000000; ++i) {
  Foo f;  // My ctor and dtor get called 1000000 times each.

It may be more efficient to declare such a variable used in a loop outside that loop:

Foo f;  // My ctor and dtor get called once each.
for (int i = 0; i < 1000000; ++i) {

Static and Global Variables


Static or global variables of class type are forbidden: they cause hard-to-find bugs due to indeterminate order of construction and destruction.

Objects with static storage duration, including global variables, static variables, static class member variables, and function static variables, must be Plain Old Data (POD): only ints, chars, floats, or pointers, or arrays/structs of POD.

The order in which class constructors and initializers for static variables are called is only partially specified in C++ and can even change from build to build, which can cause bugs that are difficult to find. Therefore in addition to banning globals of class type, we do not allow static POD variables to be initialized with the result of a function, unless that function (such as getenv(), or getpid()) does not itself depend on any other globals.

Likewise, the order in which destructors are called is defined to be the reverse of the order in which the constructors were called. Since constructor order is indeterminate, so is destructor order. For example, at program-end time a static variable might have been destroyed, but code still running — perhaps in another thread — tries to access it and fails. Or the destructor for a static ‘string’ variable might be run prior to the destructor for another variable that contains a reference to that string.

As a result we only allow static variables to contain POD data. This rule completely disallows vector (use C arrays instead), or string (use const char []).

If you need a static or global variable of a class type, consider initializing a pointer (which will never be freed), from either your main() function or from pthread_once(). Note that this must be a raw pointer, not a “smart” pointer, since the smart pointer’s destructor will have the order-of-destructor issue that we are trying to avoid.


Classes are the fundamental unit of code in C++. Naturally, we use them extensively. This section lists the main dos and don’ts you should follow when writing a class.

Doing Work in Constructors


In general, constructors should merely set member variables to their initial values. Any complex initialization should go in an explicit Init() method.

Definition: It is possible to perform initialization in the body of the constructor.

Pros: Convenience in typing. No need to worry about whether the class has been initialized or not.

Cons: The problems with doing work in constructors are:

  • There is no easy way for constructors to signal errors, short of using exceptions (which are forbidden).
  • If the work fails, we now have an object whose initialization code failed, so it may be an indeterminate state.
  • If the work calls virtual functions, these calls will not get dispatched to the subclass implementations. Future modification to your class can quietly introduce this problem even if your class is not currently subclassed, causing much confusion.
  • If someone creates a global variable of this type (which is against the rules, but still), the constructor code will be called before main(), possibly breaking some implicit assumptions in the constructor code. For instance, gflags will not yet have been initialized.


Decision: If your object requires non-trivial initialization, consider having an explicit Init() method. In particular, constructors should not call virtual functions, attempt to raise errors, access potentially uninitialized global variables, etc.

Default Constructors


You must define a default constructor if your class defines member variables and has no other constructors. Otherwise the compiler will do it for you, badly.

Definition: The default constructor is called when we new a class object with no arguments. It is always called when calling new[] (for arrays).

Pros: Initializing structures by default, to hold “impossible” values, makes debugging much easier.

Cons: Extra work for you, the code writer.


If your class defines member variables and has no other constructors you must define a default constructor (one that takes no arguments). It should preferably initialize the object in such a way that its internal state is consistent and valid.

The reason for this is that if you have no other constructors and do not define a default constructor, the compiler will generate one for you. This compiler generated constructor may not initialize your object sensibly.

If your class inherits from an existing class but you add no new member variables, you are not required to have a default constructor.

Explicit Constructors


Use the C++ keyword explicit for constructors with one argument.

Definition: Normally, if a constructor takes one argument, it can be used as a conversion. For instance, if you define Foo::Foo(string name) and then pass a string to a function that expects a Foo, the constructor will be called to convert the string into a Foo and will pass the Foo to your function for you. This can be convenient but is also a source of trouble when things get converted and new objects created without you meaning them to. Declaring a constructor explicit prevents it from being invoked implicitly as a conversion.

Pros: Avoids undesirable conversions.

Cons: None.


We require all single argument constructors to be explicit. Always put explicit in front of one-argument constructors in the class definition: explicit Foo(string name);

The exception is copy constructors, which, in the rare cases when we allow them, should probably not be explicit. Classes that are intended to be transparent wrappers around other classes are also exceptions. Such exceptions should be clearly marked with comments.

Copy Constructors


Provide a copy constructor and assignment operator only when necessary. Otherwise, disable them with DISALLOW_COPY_AND_ASSIGN.

Definition: The copy constructor and assignment operator are used to create copies of objects. The copy constructor is implicitly invoked by the compiler in some situations, e.g. passing objects by value.

Pros: Copy constructors make it easy to copy objects. STL containers require that all contents be copyable and assignable. Copy constructors can be more efficient than CopyFrom()-style workarounds because they combine construction with copying, the compiler can elide them in some contexts, and they make it easier to avoid heap allocation.

Cons: Implicit copying of objects in C++ is a rich source of bugs and of performance problems. It also reduces readability, as it becomes hard to track which objects are being passed around by value as opposed to by reference, and therefore where changes to an object are reflected.


Few classes need to be copyable. Most should have neither a copy constructor nor an assignment operator. In many situations, a pointer or reference will work just as well as a copied value, with better performance. For example, you can pass function parameters by reference or pointer instead of by value, and you can store pointers rather than objects in an STL container.

If your class needs to be copyable, prefer providing a copy method, such as CopyFrom() or Clone(), rather than a copy constructor, because such methods cannot be invoked implicitly. If a copy method is insufficient in your situation (e.g. for performance reasons, or because your class needs to be stored by value in an STL container), provide both a copy constructor and assignment operator.

If your class does not need a copy constructor or assignment operator, you must explicitly disable them. To do so, add dummy declarations for the copy constructor and assignment operator in the private: section of your class, but do not provide any corresponding definition (so that any attempt to use them results in a link error).

For convenience, a DISALLOW_COPY_AND_ASSIGN macro can be used:

// A macro to disallow the copy constructor and operator= functions
// This should be used in the private: declarations for a class
  TypeName(const TypeName&);               \
  void operator=(const TypeName&)

Then, in class Foo:

class Foo {
  Foo(int f);



Structs vs. Classes


Use a struct only for passive objects that carry data; everything else is a class.

The struct and class keywords behave almost identically in C++. We add our own semantic meanings to each keyword, so you should use the appropriate keyword for the data-type you’re defining.

structs should be used for passive objects that carry data, and may have associated constants, but lack any functionality other than access/setting the data members. The accessing/setting of fields is done by directly accessing the fields rather than through method invocations. Methods should not provide behavior but should only be used to set up the data members, e.g., constructor, destructor, Initialize(), Reset(), Validate().

If more functionality is required, a class is more appropriate. If in doubt, make it a class.

For consistency with STL, you can use struct instead of class for functors and traits.

Note that member variables in structs and classes have different naming rules.



Composition is often more appropriate than inheritance. When using inheritance, make it public.

Definition: When a sub-class inherits from a base class, it includes the definitions of all the data and operations that the parent base class defines. In practice, inheritance is used in two major ways in C++: implementation inheritance, in which actual code is inherited by the child, and interface inheritance, in which only method names are inherited.

Pros: Implementation inheritance reduces code size by re-using the base class code as it specializes an existing type. Because inheritance is a compile-time declaration, you and the compiler can understand the operation and detect errors. Interface inheritance can be used to programmatically enforce that a class expose a particular API. Again, the compiler can detect errors, in this case, when a class does not define a necessary method of the API.

Cons: For implementation inheritance, because the code implementing a sub-class is spread between the base and the sub-class, it can be more difficult to understand an implementation. The sub-class cannot override functions that are not virtual, so the sub-class cannot change implementation. The base class may also define some data members, so that specifies physical layout of the base class.


All inheritance should be public. If you want to do private inheritance, you should be including an instance of the base class as a member instead.

Do not overuse implementation inheritance. Composition is often more appropriate. Try to restrict use of inheritance to the “is-a” case: Bar subclasses Foo if it can reasonably be said that Bar “is a kind of” Foo.

Make your destructor virtual if necessary. If your class has virtual methods, its destructor should be virtual.

Limit the use of protected to those member functions that might need to be accessed from subclasses. Note that data members should be private.

When redefining an inherited virtual function, explicitly declare it virtual in the declaration of the derived class. Rationale: If virtual is omitted, the reader has to check all ancestors of the class in question to determine if the function is virtual or not.

Multiple Inheritance


Only very rarely is multiple implementation inheritance actually useful. We allow multiple inheritance only when at most one of the base classes has an implementation; all other base classes must be pure interface classes tagged with the Interface suffix.

Definition: Multiple inheritance allows a sub-class to have more than one base class. We distinguish between base classes that are pure interfaces and those that have an implementation.

Pros: Multiple implementation inheritance may let you re-use even more code than single inheritance (see Inheritance).

Cons: Only very rarely is multiple implementation inheritance actually useful. When multiple implementation inheritance seems like the solution, you can usually find a different, more explicit, and cleaner solution.

Decision: Multiple inheritance is allowed only when all superclasses, with the possible exception of the first one, are pure interfaces. In order to ensure that they remain pure interfaces, they must end with the Interface suffix.

Note: There is an exception to this rule on Windows.



Classes that satisfy certain conditions are allowed, but not required, to end with an Interface suffix.


A class is a pure interface if it meets the following requirements:

  • It has only public pure virtual (“= 0“) methods and static methods (but see below for destructor).
  • It may not have non-static data members.
  • It need not have any constructors defined. If a constructor is provided, it must take no arguments and it must be protected.
  • If it is a subclass, it may only be derived from classes that satisfy these conditions and are tagged with the Interface suffix.

An interface class can never be directly instantiated because of the pure virtual method(s) it declares. To make sure all implementations of the interface can be destroyed correctly, they must also declare a virtual destructor (in an exception to the first rule, this should not be pure). See Stroustrup, The C++ Programming Language, 3rd edition, section 12.4 for details.

Pros: Tagging a class with the Interface suffix lets others know that they must not add implemented methods or non static data members. This is particularly important in the case of multiple inheritance. Additionally, the interface concept is already well-understood by Java programmers.

Cons: The Interface suffix lengthens the class name, which can make it harder to read and understand. Also, the interface property may be considered an implementation detail that shouldn’t be exposed to clients.

Decision: A class may end with Interface only if it meets the above requirements. We do not require the converse, however: classes that meet the above requirements are not required to end with Interface.

Operator Overloading

Do not overload operators except in rare, special circumstances.

Access Control

Make data members private, and provide access to them through accessor functions as needed (for technical reasons, we allow data members of a test fixture class to be protected when using Google Test). Typically a variable would be called foo_ and the accessor function foo(). You may also want a mutator function set_foo(). Exception: static const data members (typically called kFoo) need not be private.

Declaration Order

Use the specified order of declarations within a class: public: before private:, methods before data members (variables), etc.

Write Short Functions

Prefer small and focused functions.

Google-Specific Magic

There are various tricks and utilities that we use to make C++ code more robust, and various ways we use C++ that may differ from what you see elsewhere.

Smart Pointers

If you actually need pointer semantics, scoped_ptr is great. You should only use std::tr1::shared_ptr under very specific conditions, such as when objects need to be held by STL containers. You should never use auto_ptr.


Use to detect style errors.

Other C++ Features

Reference Arguments

All parameters passed by reference must be labeled const.

Function Overloading

Use overloaded functions (including constructors) only if a reader looking at a call site can get a good idea of what is happening without having to first figure out exactly which overload is being called.

Default Arguments

We do not allow default function parameters, except in a few uncommon situations explained below.

Variable-Length Arrays and alloca()

We do not allow variable-length arrays or alloca().


We allow use of friend classes and functions, within reason.


We do not use C++ exceptions.

Run-Time Type Information (RTTI)

We do not use Run Time Type Information (RTTI).


Use C++ casts like static_cast<>(). Do not use other cast formats like int y = (int)x; or int y = int(x);.


Use streams only for logging.

Preincrement and Predecrement

Use prefix form (++i) of the increment and decrement operators with iterators and other template objects.

Use of const

We strongly recommend that you use const whenever it makes sense to do so.

Integer Types

Of the built-in C++ integer types, the only one used is int. If a program needs a variable of a different size, use a precise-width integer type from <stdint.h>, such as int16_t.

64-bit Portability

Code should be 64-bit and 32-bit friendly. Bear in mind problems of printing, comparisons, and structure alignment.

Preprocessor Macros

Be very cautious with macros. Prefer inline functions, enums, and const variables to macros.

0 and NULL

Use 0 for integers, 0.0 for reals, NULL for pointers, and '\0' for chars.


Use sizeof(varname) instead of sizeof(type) whenever possible.


Use only approved libraries from the Boost library collection.


Use only approved libraries and language extensions from C++0x. Currently, none are approved.


The most important consistency rules are those that govern naming. The style of a name immediately informs us what sort of thing the named entity is: a type, a variable, a function, a constant, a macro, etc., without requiring us to search for the declaration of that entity. The pattern-matching engine in our brains relies a great deal on these naming rules.

Naming rules are pretty arbitrary, but we feel that consistency is more important than individual preferences in this area, so regardless of whether you find them sensible or not, the rules are the rules.

General Naming Rules

Function names, variable names, and filenames should be descriptive; eschew abbreviation. Types and variables should be nouns, while functions should be “command” verbs.

File Names

Filenames should be all lowercase and can include underscores (_) or dashes (-). Follow the convention that your project uses. If there is no consistent local pattern to follow, prefer “_”.

Type Names

Type names start with a capital letter and have a capital letter for each new word, with no underscores: MyExcitingClass, MyExcitingEnum.

Variable Names

Variable names are all lowercase, with underscores between words. Class member variables have trailing underscores. For instance: my_exciting_local_variable, my_exciting_member_variable_.

Constant Names

Use a k followed by mixed case: kDaysInAWeek.

Function Names

Regular functions have mixed case; accessors and mutators match the name of the variable: MyExcitingFunction(), MyExcitingMethod(), my_exciting_member_variable(), set_my_exciting_member_variable().

Namespace Names

Namespace names are all lower-case, and based on project names and possibly their directory structure: google_awesome_project.

Enumerator Names

Enumerators should be named either like constants or like macros: either kEnumName or ENUM_NAME.

Macro Names

You’re not really going to define a macro, are you? If you do, they’re like this: MY_MACRO_THAT_SCARES_SMALL_CHILDREN.

Exceptions to Naming Rules

If you are naming something that is analogous to an existing C or C++ entity then you can follow the existing naming convention scheme.


Though a pain to write, comments are absolutely vital to keeping our code readable. The following rules describe what you should comment and where. But remember: while comments are very important, the best code is self-documenting. Giving sensible names to types and variables is much better than using obscure names that you must then explain through comments.

When writing your comments, write for your audience: the next contributor who will need to understand your code. Be generous — the next one may be you!

Comment Style

Use either the // or /* */ syntax, as long as you are consistent.

File Comments

Start each file with a copyright notice, followed by a description of the contents of the file.

Class Comments

Every class definition should have an accompanying comment that describes what it is for and how it should be used.

Function Comments

Declaration comments describe use of the function; comments at the definition of a function describe operation.

Variable Comments

In general the actual name of the variable should be descriptive enough to give a good idea of what the variable is used for. In certain cases, more comments are required.

Implementation Comments

In your implementation you should have comments in tricky, non-obvious, interesting, or important parts of your code.

Punctuation, Spelling and Grammar

Pay attention to punctuation, spelling, and grammar; it is easier to read well-written comments than badly written ones.

TODO Comments

Use TODO comments for code that is temporary, a short-term solution, or good-enough but not perfect.

Deprecation Comments

Mark deprecated interface points with DEPRECATED comments.


Coding style and formatting are pretty arbitrary, but a project is much easier to follow if everyone uses the same style. Individuals may not agree with every aspect of the formatting rules, and some of the rules may take some getting used to, but it is important that all project contributors follow the style rules so that they can all read and understand everyone’s code easily.

To help you format code correctly, we’ve created a settings file for emacs.

Line Length

Each line of text in your code should be at most 80 characters long.

Non-ASCII Characters

Non-ASCII characters should be rare, and must use UTF-8 formatting.

Spaces vs. Tabs

Use only spaces, and indent 2 spaces at a time.

Function Declarations and Definitions

Return type on the same line as function name, parameters on the same line if they fit.

Function Calls

On one line if it fits; otherwise, wrap arguments at the parenthesis.


Prefer no spaces inside parentheses. The else keyword belongs on a new line.

Loops and Switch Statements

Switch statements may use braces for blocks. Empty loop bodies should use {} or continue.

Pointer and Reference Expressions

No spaces around period or arrow. Pointer operators do not have trailing spaces.

Boolean Expressions

When you have a boolean expression that is longer than the standard line length, be consistent in how you break up the lines.

Return Values

Do not needlessly surround the return expression with parentheses.

Variable and Array Initialization

Your choice of = or ().

Preprocessor Directives

Preprocessor directives should not be indented but should instead start at the beginning of the line.

Class Format

Sections in public, protected and private order, each indented one space.

Constructor Initializer Lists

Constructor initializer lists can be all on one line or with subsequent lines indented four spaces.

Namespace Formatting

The contents of namespaces are not indented.

Horizontal Whitespace

Use of horizontal whitespace depends on location. Never put trailing whitespace at the end of a line.

Vertical Whitespace

Minimize use of vertical whitespace.

Exceptions to the Rules

The coding conventions described above are mandatory. However, like all good rules, these sometimes have exceptions, which we discuss here.

Existing Non-conformant Code

You may diverge from the rules when dealing with code that does not conform to this style guide.

Windows Code

Windows programmers have developed their own set of coding conventions, mainly derived from the conventions in Windows headers and other Microsoft code. We want to make it easy for anyone to understand your code, so we have a single set of guidelines for everyone writing C++ on any platform.

Parting Words

Use common sense and BE CONSISTENT.

If you are editing code, take a few minutes to look at the code around you and determine its style. If they use spaces around their if clauses, you should, too. If their comments have little boxes of stars around them, make your comments have little boxes of stars around them too.

The point of having style guidelines is to have a common vocabulary of coding so people can concentrate on what you are saying, rather than on how you are saying it. We present global style rules here so people know the vocabulary. But local style is also important. If code you add to a file looks drastically different from the existing code around it, the discontinuity throws readers out of their rhythm when they go to read it. Try to avoid this.

OK, enough writing about writing code; the code itself is much more interesting. Have fun!

Revision 3.180

Benjy Weinberger
Craig Silverstein
Gregory Eitzmann
Mark Mentovai
Tashana Landray

本文固定链接: | 周忞 | 吉心的记事本

该日志由 吉心 于2011年03月08日发表在 网络摘编 分类下, 你可以发表评论
原创文章转载请注明: Google C++ Style Guide | 周忞 | 吉心的记事本
关键字: , ,

Google C++ Style Guide:等您坐沙发呢!


您必须 [ 登录 ] 才能发表留言!